Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38400413

RESUMEN

Chemosensor technology for trace gases in the air always aims to identify these compounds and then measure their concentrations. For identification, traceable methods are sparse and relate to large appliances such as mass spectrometers. We present a new method that uses the alternative traceable measurement of the ionization energies of trace gases in a way that can be miniaturized and energetically tuned. We investigate the achievable performance. Since tunable UV sources are not available for photoionization, we take a detour via impact ionization with electrons, which we generate using the photoelectric effect and bring to sharp, defined energies on a nanoscale in the air. Electron impact ionization is thus possible at air pressures of up to 900 hPa. The sensitivity of the process reaches 1 ppm and is equivalent to that of classic PID. With sharpened energy settings, substance identification is currently possible with an accuracy of 30 meV. We can largely explain the experimental observations with the known quantum mechanical models.

2.
Materials (Basel) ; 16(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110056

RESUMEN

The influence of plasma-reduction treatment on iron and copper compounds at different oxidation states was investigated in this study. For this purpose, reduction experiments were carried out with artificially generated patina on metal sheets and with metal salt crystals of iron(II) sulfate (FeSO4), iron(III) chloride (FeCl3), and copper(II) chloride (CuCl2), as well as with the metal salt thin films of these compounds. All the experiments were carried out under cold low-pressure microwave plasma conditions; the main focus was on plasma reduction at a low pressure in order to evaluate an implementable process in a parylene-coating device. Usually, plasma is used within the parylene-coating process as a supporting tool for adhesion improvement and micro-cleaning efforts. This article offers another useful application for implementing plasma treatment as a reactive medium in order to apply different functionalities by an alteration in the oxidation state. The effect of microwave plasmas on metal surfaces and metal composite materials has been widely studied. In contrast, this work deals with metal salt surfaces generated from a solution and the influence of microwave plasma on metal chlorides and sulfates. While the plasma reduction of metal compounds commonly succeeds with hydrogen-containing plasmas at high temperatures, this study shows a new reduction process that reduces iron salts at temperatures between 30 and 50 °C. A novelty of this study is the alteration in the redox state of the base and noble metal materials within a parylene-coating device with the help of an implemented microwave generator. Another novelty of this study is treating metal salt thin layers for reduction purposes in order to provide the opportunity to include subsequent coating experiments to create parylene metal multilayers. Another new aspect of this study is the adapted reduction process of thin metal salt layers consisting of either noble or base metals, with an air plasma pre-treatment prior to the hydrogen-containing plasma-reduction procedure.

3.
Pathogens ; 12(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37111446

RESUMEN

During machine milking, pathogenic microorganisms can be transmitted from cow to cow through liners. Therefore, in Germany, a spray method for the intermediate disinfection of the milking cluster is often used for prevention. This method of cluster disinfection is easy to perform, requires little time and no extra materials, and the disinfection solution is safe from outside contamination in the spray bottle. Since no data on a systematic efficacy trial are available, the aim of this study was to determine the microbial reduction effect of intermediate disinfection. Therefore, laboratory and field trials were conducted. In both trials, two sprays of 0.85 mL per burst of different disinfectant solutions were sprayed into the contaminated liners. For sampling, a quantitative swabbing method using a modified wet-dry swab (WDS) technique based on DIN 10113-1: 1997-07 was applied. Thus, the effectiveness of disinfectants based on Peracetic Acid, Hydrogen Peroxide and Plasma-Activated Buffered Solution (PABS) was compared. In the laboratory trial, the inner surfaces of liners were contaminated with pure cultures of Escherichia (E.) coli, Staphylococcus (S.) aureus, Streptococcus (Sc.) uberis and Sc. agalactiae. The disinfection of the contaminated liners with the disinfectants resulted in a significant reduction in bacteria with values averaging 1 log for E. coli, 0.7 log for S. aureus, 0.7 log for Sc. uberis and 0.8 log for Sc. agalactiae. The highest reduction was obtained for contamination with E. coli (1.3 log) and Sc. uberis (0.8 log) when PABS was applied and for contamination with S. aureus (1.1 log) and Sc. agalactiae (1 log) when Peracetic Acid Solution (PAS) was used. Treatment with sterile water only led to an average reduction of 0.4 log. In the field trial, after the milking of 575 cows, the liners were disinfected and the total microorganism count from the liner surface was performed. The reduction was measured against an untreated liner within the cluster. Although a reduction in microorganisms was achieved in the field trial, it was not significant. When using PAS, a log reduction of 0.3 was achieved; when using PABS, a log reduction of 0.2 was obtained. The difference between the two disinfection methods was also not significant. Treatment with sterile water only led to a reduction of 0.1 log. The results show that spray disinfection under these circumstances does result in a reduction in the bacteria on the milking liner surface, but for effective disinfection a higher reduction would be preferred.

4.
Foods ; 12(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36900630

RESUMEN

Foodborne diseases are mainly caused by the contamination of meat or meat products with pathogenic microorganisms. In this study, we first investigated the in vitro application of TRIS-buffered plasma-activated water (Tb-PAW) on Campylobacter (C.) jejuni and Escherichia (E.) coli, with a reduction of approx. 4.20 ± 0.68 and 5.12 ± 0.46 log10 CFU/mL. Furthermore, chicken and duck thighs (inoculated with C. jejuni or E. coli) and breasts (with natural microflora) with skin were sprayed with Tb-PAW. Samples were packed under a modified atmosphere and stored at 4 °C for 0, 7, and 14 days. The Tb-PAW could reduce C. jejuni on days 7 and 14 (chicken) and E. coli on day 14 (duck) significantly. In chicken, there were no significant differences in sensory, pH-value, color, and antioxidant activity, but %OxyMb levels decreased, whereas %MetMb and %DeoMb increased. In duck, we observed slight differences in pH-value, color, and myoglobin redox forms for the Tb-PAW, which were not perceived by the sensory test persons. With only slight differences in product quality, its application as a spray treatment may be a useful method to reduce C. jejuni and E. coli on chicken and duck carcasses.

5.
Skin Pharmacol Physiol ; 35(6): 343-353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353780

RESUMEN

INTRODUCTION: We aim to explore potentials and modalities of cold atmospheric pressure plasma (CAP) for the subsequent development of therapies targeting an increased perfusion of the lower leg skin tissue. In this study, we addressed the question whether the microcirculation enhancement is restricted to the tissue in direct contact with plasma or if adjacent tissue might also benefit. METHODS: A dielectric barrier discharge (DBD)-generated CAP device exhibiting an electrode area of 27.5 cm2 was used to treat the anterior lower leg of ten healthy subjects for 4.5 min. Subsequently, hyperspectral imaging was performed to measure the tempospatially resolved characteristics of microcirculation parameters in superficial (up to 1 mm) and deeper (up to 5 mm) skin layers. RESULTS: In the tissue area covered by the plasma electrode, DBD-CAP treatment enhances most of the perfusion parameters. The maximum oxygen saturation increase reached 8%, the near-infrared perfusion index (NIR) increased by a maximum of 4%, and the maximum tissue hemoglobin increase equaled 14%. Tissue water index (TWI) was lower in both the control and the plasma groups, thus not affected by the DBD-CAP treatment. Yet, our study reveals that adjacent tissue is hardly affected by the enhancements in the electrode area, and the effects are locally confined. CONCLUSION: Application of DBD-CAP to the lower leg resulted in enhancement of cutaneous microcirculation that extended 1 h beyond the treatment period with localization to the tissue area in direct contact with the cold plasma. This suggests the possibility of tailoring application schemes for topically confined enhancement of skin microcirculation, e.g., in the treatment of chronic wounds.


Asunto(s)
Gases em Plasma , Humanos , Microcirculación , Gases em Plasma/farmacología , Piel , Presión Atmosférica , Voluntarios Sanos
6.
Materials (Basel) ; 15(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36295193

RESUMEN

In the development of new materials, the focus nowadays is increasingly on their relevance with regard to lightweight construction or environmental compatibility. The idea of a lightweight sandwich panel was inspired by an increasing number of cosmetic accessories that use the fibers of the loofah plant, a rapidly renewable, light, fibrous raw material. The aim of the study was to develop a fiber composite panel based on the fibers of the loofah plant (Luffa cylindrica) as core material and wooden veneer as the skin layer to be used in areas of lead construction. Three different panel variations were produced for the tests, with a fiber-adhesive ratio between 1:1.05, 1:0.8, and 1:0.5. The mechanical strength (flexural strength and internal bond) and the physical properties (density and thickness swelling) were determined as a function of the fiber-adhesive composition. The results show that the flexural strength increased by approx. 400% and the thickness swelling was reduced by 10% with increasing adhesive quantity.

7.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893510

RESUMEN

In this paper, a new approach for the synthesis of Parylene-metal multilayers was examined. The metal layers were derived from a metal salt solution in methanol and a post-drying plasma reduction treatment. This process was designed as a one-pot synthesis, which needs a very low amount of resources and energy compared with those using electron beam sputtering processes. The Parylene coatings were obtained after reduction plasma treatments with Parylene C. Therefore, a Parylene coating device with an included plasma microwave generator was used to ensure the character of a one-pot synthesis. This process provided ultra-thin metal salt layers in the range of 1-2 nm for layer thickness and 10-30 nm for larger metal salt agglomerates all over the metal salt layer. The Parylene layers were obtained with thicknesses between approx. 4.5 and 4.7 µm from ellipsometric measurements and 5.7-6.3 µm measured by white light reflectometry. Tensile strength analysis showed an orthogonal pulling stress resistance of around 4500 N. A surface roughness of 4-8 nm for the metal layers, as well as 20-29 nm for the Parylene outer layer, were measured. The wettability for non-polar liquids with a contact angle of 30° was better than for polar liquids, such as water, achieving 87° on the Parylene C surfaces.

8.
Sensors (Basel) ; 22(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632269

RESUMEN

In this study, the surface parameters wettability, roughness, and adhesive penetration, which are important for wood bonding, were investigated and evaluated utilizing non-destructive methods after different mechanical processing. For this purpose, beech and birch finger joints were prepared with different cutting combinations (three cutters with different sharpness levels and two feed rates) in an industrial process. Effects and interactions on the surface parameters resulting from the different cutting combinations were evaluated using three Full Factorial Designs. The various cutting parameters had a predominantly significant influence on the surface parameters. The effects and identified interactions highlight the complexity of the cutting surface and the importance of wood bonding. In this respect, a new finding is that with sharper cutters, higher contact angles of the adhesives occur. The methods (contact angle measurement, laser scanning microscopy, and brightfield microscopy) used were well suited to make effects visible and quantifiable, which can be of interest for the quality control of the wood processing industry. The results can help to better understand and evaluate the design of wood surfaces via machining and the bonding of hardwoods. Possibly the results can contribute to further standardizing the production of load-bearing hardwood finger joints and making them more efficient.


Asunto(s)
Articulaciones de los Dedos , Madera , Adhesivos , Propiedades de Superficie , Humectabilidad
9.
J Wound Care ; 30(11): 904-914, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34747217

RESUMEN

OBJECTIVE: The response of different critical acute and hard-to-heal wounds to an innovative wound care modality-direct application of cold atmospheric plasma (CAP)-was investigated in this clinical case series. METHOD: Over an observation period of two years, acute wounds with at least one risk factor for chronification, as well as hard-to-heal wounds were treated for 180 seconds three times per week with CAP. CAP treatment was additional to standard wound care. Photographs were taken for wound documentation. The wound sizes before the first CAP treatment, after four weeks, after 12 weeks and at wound closure/end of observation time were determined using image processing software, and analysed longitudinally for the development of wound size. RESULTS: A total of 27 wounds (19 hard-to-heal and eight acute wounds) with a mean wound area of 15cm2 and a mean wound age of 49 months were treated with CAP and analysed. All (100%) of the acute wounds and 68% of the hard-to-heal wounds healed after an average treatment duration of 14.2 weeks. At the end of the observation period, 21% of hard-to-heal wounds were not yet closed but were reduced in size by >80%. In 11% of the hard-to-heal wounds (n=2) therapy failed. CONCLUSION: The results suggested a beneficial effect of additional CAP therapy on wound healing. DECLARATION OF INTEREST: This work was carried out within the research projects 'Plasma for Life' (funding reference no. 13FH6I04IA) with financial support from the German Federal Ministry of Education and Research (BMBF). In the past seven years AFS has provided consulting services to Evonik and has received institutional support by Heraeus, Johnson & Johnson and Evonik. There are no royalties to disclose. The Department for Trauma Surgery, Orthopaedics and Plastic Surgery received charitable donations by CINOGY GmbH. CINOGY GmbH released the di_CAP devices and electrodes for the study. WV and AH were involved in the development of the used di_CAP device (Plasmaderm, CINOGY GmbH). WV is shareholder of the outsourced start-up company CINOGY GmbH.


Asunto(s)
Gases em Plasma , Preescolar , Humanos , Gases em Plasma/uso terapéutico , Investigación , Cicatrización de Heridas
10.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202580

RESUMEN

In recent years, awareness regarding sustainability and the responsible usage of natural resources has become more important in our modern society. As a result, wood as a building material experiences a renaissance. However, depending on the use case, protective measures may be necessary to increase wood's durability and prolong its service life. The chemical vapor deposition (CVD) of parylene-N layers offers an interesting alternative to solvent-based and potentially environmentally harmful coating processes. The CVD process utilized in this study generated transparent, uniform barrier layers and can be applied on an extensive range of substrates without the involvement of any solvents. In this study, European beech wood samples (Fagus sylvatica L.) were coated with parylene-N using the CVD process, with paracyclophane as a precursor. The aim of the study was to analyze the water absorption of beech wood, in relation to the different layer thicknesses of parylene-N. Therefore, four different coating thicknesses from 0.5 to 40 µm were deposited, depending on the initial amount of precursor used. The deposited layers were analyzed by reflection interference spectroscopy and scanning electron microscopy, and their chemical structures and compositions were investigated by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Due to the chemical structure of parylene-N, the deposited layers led to a significantly increased water contact angle and reduced the water uptake by 25-34% compared to the uncoated reference samples. A linear correlation between layer thickness and water absorption was observed. The coating of wood with parylene-N provides a promising water barrier, even with thin layers.

11.
Nanomaterials (Basel) ; 10(3)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204519

RESUMEN

In this publication, it is shown how to synthesize silver nanoparticles from silver cations out of aqueous solutions by the use of an atmospheric pressure plasma source. The use of an atmospheric pressure plasma leads to a very fast reduction of silver ions in extensive solvent volumes. In order to investigate the nanoparticle synthesis process, ultraviolet/visible (UV/VIS) absorption spectra were recorded in situ. By using transmission electron microscopy and by the analysis of UV/VIS spectra, the kinetics of silver nanoparticle formation by plasma influence can be seen in more detail. For example, there are two different sections visible in the synthesis during the plasma exposure process. The first section of the synthesis is characterized by a linear formation of small spherical particles of nearly constant size. The second section is predominated by saturation effects. Here, particle faults are increasingly formed, induced by changes in the particle shape and the fusion of those particles. The plasma exposure time, therefore, determines the shape and size distribution of the nanoparticles.

12.
Skin Pharmacol Physiol ; 33(2): 69-76, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31962316

RESUMEN

INTRODUCTION: Cold atmospheric plasma (CAP) is gaining increasing importance as a medical or cosmetic treatment for various indications. The technology is best suited to the treatment of surfaces such as the skin and is already used in wound care and, in exemplary case studies, the reduction of superficial tumors. Several plasma sources have been reported to affect the skin barrier function and potentially enable drug delivery across or into plasma-treated skin. OBJECTIVE: In this study, this effect was quantified for different plasma sources in order to elucidate the influence of voltage rise time, pulse duration, and power density in treatments of full-thickness skin. METHODS: We compared three different dielectric barrier discharges (DBDs) as to their permeabilization efficiency using Franz diffusion cell permeation experiments and measurements of the transepithelial electrical resistance (TEER) with full-thickness human excised skin. RESULTS: We found a significant reduction of the TEER for all three plasma sources. Permeation of the hydrophilic sodium fluorescein molecule was enhanced by a factor of 11.7 (low power) to 41.6 (high power) through µs-pulsed DBD-treated skin. A smaller effect was observed after treatment with the ns-pulsed DBD. CONCLUSIONS: The direct treatment of excised human full-thickness skin with CAP, specifically a DBD, can lead to pore formation and enhances transdermal transport of sodium fluorescein.


Asunto(s)
Electricidad , Gases em Plasma/farmacología , Absorción Cutánea , Piel/metabolismo , Administración Cutánea , Adulto , Femenino , Humanos , Persona de Mediana Edad , Gases em Plasma/administración & dosificación , Piel/efectos de los fármacos
13.
Chemistry ; 26(16): 3509-3514, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31943400

RESUMEN

Heterogeneous copper catalysis enabled photoinduced C-H arylations under exceedingly mild conditions at room temperature. The versatile hybrid copper catalyst provided step-economical access to arylated heteroarenes, terpenes and alkaloid natural products with various aryl halides. The hybrid copper catalyst could be reused without significant loss of catalytic efficacy. Detailed studies in terms of TEM, HRTEM and XPS analysis of the hybrid copper catalyst, among others, supported its outstanding stability and reusability.

14.
Appl Opt ; 58(22): 6063-6066, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503930

RESUMEN

Annually, wood-destroying insects cause severe damage in forests. The widespread population of typographer (Ips typographus), a beetle species from the subfamily of bark beetles (Scolytidae) in Europe, mainly occurs in coniferous wood, especially in spruce (Picea abies), the most silviculturally relevant wood species. The typographer infestation is detected mainly by visual monitoring and without invasive techniques only recognizable at a late stage. Terahertz radiation has shown enormous potential in nondestructive testing. THz measurements in the time-domain performed with a robotic THz system can be used for 3D reconstruction of the internal structure of the samples. In this article, we report the detection of a change in the wood structure of spruce caused by typographer burrows.

15.
Biochim Biophys Acta Gen Subj ; 1863(10): 1513-1523, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31129087

RESUMEN

BACKGROUND: In recent years, the medical use of cold atmospheric plasma has received much attention. Plasma sources can be suited for widely different indications depending on their physical and chemical characteristics. Being interested in the enhancement of drug transport across the skin by plasma treatment, we evaluated three dielectric barrier discharges (DBDs) as to their potential use in permeabilizing human isolated stratum corneum (SC). METHODS: Imaging techniques (electrochemical and redox-chemical imaging, fluorescence microscopy), transepithelial electrical resistance measurements and permeation studies were employed to study the permeabilizing effect of different DBD-treatments on SC. RESULTS: Filamentous µs-pulsed DBDs induced robust pore formation in SC. Increasing the power of the µs-pulsed DBD lead to more pronounced pore formation but might increase the risk of undesired side-effects. Plasma permeabilization was much smaller for the ns-pulsed DBD, which left SC samples largely intact. CONCLUSIONS: The comparison of different DBDs provided insight into the mechanism of DBD-induced SC permeabilization. It also illustrated the need to tailor electrical characteristics of a DBD to optimize it for a particular treatment modality. For future applications in drug delivery it would be beneficial to monitor the permeabilization during a plasma treatment. GENERAL SIGNIFICANCE: Our results provide mechanistic insight into the potential of an emerging interdisciplinary technology - plasma medicine - as a prospective tool or treatment option. While it might become a safe and pain-free method to enhance skin permeation of drug substances, this is also a mechanism to keep in mind when tailoring plasma sources for other uses.


Asunto(s)
Impedancia Eléctrica , Permeabilidad , Fenómenos Fisiológicos de la Piel , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Persona de Mediana Edad , Imagen Óptica , Gases em Plasma , Análisis Espectral/métodos
16.
Artículo en Inglés | MEDLINE | ID: mdl-30577656

RESUMEN

Pediculosis, that is the infestation of humans with Pediculus humanus capitis (head lice), poses a worldwide problem that is as old as mankind itself. Over the centuries, man has developed a variety of remedies, all of which have ultimately culminated in the use of chemical agents. Some of these remedies are known to produce successful results. A large portion of the effective remedies used to kill lice and their eggs contain insecticides, but there is an increasing number of reports of head lice populations revealing an increased resistance. This study presents an alternative treatment approach, the efficacy of which is based on physical effects. Cold atmospheric pressure plasmas have successfully shown their formidably wide application range within the field of plasma medicine. This study presents a plasma device in its current stage of development that is engineered as a consumer product to enable an alternative physical and insecticide-free option for the treatment of pediculosis. An efficacy study concerning different developmental stages of P. humanus humanus is presented. P. humanus humanus was chosen as a substitute test organism for P. humanus capitis due to possible laboratory rearing and high anatomic similarity. The study shows how a single stroke of the plasma device over a hair strand (approximately 22 cm in length with a weight of 1.5 g) led to mortality rates of 68.3% (50.0; 79.7) (95% CI) in the juvenile test group, a mortality rate of approx. 67.7% (54.9; 78.8) (95% CI) in the female test group, and approx. 46.7% (28.3; 65.7) (95% CI) in the male test group. When single eggs were introduced directly into the plasma for approx. 1 s, younger eggs (0⁻2 d) showed a higher mortality of 66.7% (42.7; 82.7) than the older (4⁻6 d) eggs, with 16.7% (5.6; 34.7) (CI). Furthermore, the results of a risk assessment of the device are described. The article concludes with necessary handling instructions as well as further developmental steps, derived from the results of the efficacy and the risk assessment study.


Asunto(s)
Dermatología/instrumentación , Infestaciones por Piojos/terapia , Pediculus/fisiología , Gases em Plasma/uso terapéutico , Animales , Femenino , Humanos , Masculino , Gases em Plasma/normas , Análisis de Supervivencia
18.
ACS Nano ; 12(8): 8555-8563, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30080966

RESUMEN

Adequate characterization and quality control of atomically thin layered materials (2DM) has become a serious challenge particularly given the rapid advancements in their large area manufacturing and numerous emerging industrial applications with different substrate requirements. Here, we focus on ellipsometric contrast micrography (ECM), a fast intensity mode within spectroscopic imaging ellipsometry, and show that it can be effectively used for noncontact, large area characterization of 2DM to map coverage, layer number, defects and contamination. We demonstrate atomic layer resolved, quantitative mapping of chemical vapor deposited graphene layers on Si/SiO2-wafers, but also on rough Cu catalyst foils, highlighting that ECM is applicable to all application relevant substrates. We discuss the optimization of ECM parameters for high throughput characterization. While the lateral resolution can be less than 1 µm, we particularly explore fast scanning and demonstrate imaging of a 4″ graphene wafer in 47 min at 10 µm lateral resolution, i.e., an imaging speed of 1.7 cm2/min. Furthermore, we show ECM of monolayer hexagonal BN (h-BN) and of h-BN/graphene bilayers, highlighting that ECM is applicable to a wide range of 2D layered structures that have previously been very challenging to characterize and thereby fills an important gap in 2DM metrology.

19.
ACS Omega ; 3(6): 6841-6848, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458853

RESUMEN

Polymers or small molecules with functional groups were always employed to synthesize two-dimensional (2D) silver nanostructures, but the polysaccharides and derivatives have rarely been used for their preparation, let alone of uniform quadrilateral shapes. Herein, amylopectin derivatives containing concentrated carboxyl groups were first used for the synthesis of uniform 2D quadrilateral silver nanoplates (QAgNPs) with lamellar structure. As a native hyperbranched polysaccharide, amylopectin was esterified with 10-undecenoyl chloride and then modified via thiol-ene click chemistry to introduce high amount and high density of carboxyl groups. Then, QAgNPs were synthesized via UV photoreduction in the presence of the resultant amylopectin 11-((3-carboxyl)ethylthio)undecanoate (APUE3-MPA) in water-tetrahydrofuran binary system. QAgNPs showed novel uniform quadrilateral shapes with lamellar structure, as verified by their wide-angle X-ray scattering patterns. The average interlayer distance was around 1.3 nm, whereas the average edge lengths of QAgNPs varied between 0.29 ± 0.07 and 1.09 ± 0.25 µm. The concentration of APUE3-MPA and the amount of water in the reaction system strongly affected the shapes of QAgNPs. Thus, the reaction system and the arrangement of numerous carboxyl groups were the key factors for the formation of lamellar-structured QAgNPs.

20.
Artículo en Inglés | MEDLINE | ID: mdl-29186877

RESUMEN

The efficacy of plasma-treated tap water (PTW) for the possible treatment of a mealybug (Planococcus citri) infestation was studied under laboratory conditions. Mealybugs growing on Nerium oleander have been treated using PTW after being transferred to Petri dishes, thus avoiding possible buffering effects that might occur in an in-situ study. When treating tap water with a dielectric barrier discharge for several minutes (1, 3, 5 and 10 min) a distinct acidification of the water can be determined, resulting in a pH value of 1.8 after 10 min treatment. The efficacies of the treated tap water samples were compared to the efficacies achieved using classically acidified water. The classical acidification of tap water was carried out using nitric acid and hydrochloric acid to see any possible influences of the salt of the acid in question. The application of PTW revealed high mortality rates of approx. 90% after an observation period of 24 h. PTW appears promising for the treatment of smaller plant stock and commodities as produced by small scale farmers or in greenhouses as an environmentally friendly substitute or supplement to conventional pesticides.


Asunto(s)
Presión Atmosférica , Frío , Insecticidas , Gases em Plasma/administración & dosificación , Agua , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...